НОВОСТИ   БИБЛИОТЕКА   КАРТА САЙТА   ССЫЛКИ   О САЙТЕ  






предыдущая главасодержаниеследующая глава

Пуск тяговых двигателей. Назначение резисторов и индивидуальных контакторов

Казалось, что может быть проще пуска электрического двигателя, в том числе и тягового в ход? Стоит только, например быстродействующим выключателем, подключить двигатель к источнику электрической энергии, и якорь его начнет вращаться. Но в действительности дело обстоит не так просто. В момент пуска якорь двигателя неподвижен и в обмотке его не индуктируется э. д. с., уравновешивающая подведенное напряжение. Поэтому в первое мгновение при неподвижном якоре пусковой ток зависит только от значения приложенного напряжения Uc и сопротивления rд обмоток двигателя. Это сопротивление невелико. Так, для тягового двигателя электровоза ВЛ10 оно при температуре 20°С составляет 0,025 + 0,0365 + 0,0317 = 0,0932 Ом (сумма сопротивлений обмоток главных полюсов, дополнительных полюсов, компенсационной обмотки и обмотки якоря). На электровозах постоянного тока всегда, как минимум, соединены последовательно два двигателя. При подключении их к контактной сети, как показано на рис. 10, через их обмотки пойдет ток

I Uc = 3000 ≈ 16000 А.
2 rд 2·0,932

На такой ток, как мы уже знаем, и двигатели и оборудование электровоза не рассчитаны. Известно, что быстродействующий выключатель на электровозе ВЛ10 отрегулирован на ток 3100 А и поэтому в момент пуска он разорвет цепь тяговых двигателей.

Чтобы ограничить пусковой ток, все двигатели электровоза перед пуском соединяют последовательно и вводят в цепь дополнительно для ограничения тока пусковой реостат, т. е. резистор, сопротивление которого можно регулировать. В начале пуска сила тяги должна по возможности увеличиваться плавно, без толчков, особенно при трогании тяжелых составов. К счастью, поезд не представляет собой жестко связанного целого: сцепные приборы перед троганием не натянуты до предела и всегда обладают некоторой эластичностью. Поэтому сопротивление реостата rр выбирают большим, чтобы обеспечить в момент трогания небольшой ток, а следовательно, и малую силу тяги для плавного натяжения сцепных приборов. Затем сопротивление rр постепенно уменьшают, при этом ток и сила тяги соответственно растут.

Как только сила тяги превысит силу сопротивления движению, поезд начнет двигаться с ускорением. Повышая ускорение, снижают время разгона, что особенно важно на участках с короткими перегонами и частыми остановками. С увеличением скорости движения в тяговых двигателях будет индуктироваться возрастающая э. д. с. При этом ток двигателей, сила тяги и, как следствие, ускорение начнут уменьшаться. Для обеспечения примерно постоянного ускорения нужно уменьшать сопротивление реостата так, чтобы ток двигателей и касательная сила тяги оставались постоянными. Большие мощности тяговых двигателей и значительные токи затрудняют осуществление плавного регулирования. Поэтому применяют ступенчатое регулирование путем выключения отдельных секций реостата с помощью аппаратов, называемых индивидуальными контакторами. Контакты 1 и 2 индивидуальных контакторов показаны на рис. 10. Если замкнуть контакты 1 контактора, то одна секция пускового реостата будет выведена из цепи тяговых двигателей и напряжение, подводимое к ним, повысится. При замыкании контактов 2 к тяговым двигателям подводится напряжение контактной сети.

Вполне понятно, что для обеспечения более или менее плавного пуска и тем самым уменьшения колебания тока двигателя (силы тяги) следует сопротивление пускового реостата изменять небольшими ступенями. Однако это вызовет необходимость иметь большое число контакторов и усложнит силовую цепь.

Ступени пускового резистора рассчитывают исходя из наибольшего допустимого тока тяговых двигателей. Ток, при котором выключается очередная секция пускового реостата, определяют исходя из так называемого коэффициента неравномерности пускового тока, который в свою очередь зависит от заданного ускорения. Таким образом, пусковой ток не постоянен, а колеблется в пределах от максимального Iп mах до минимального Iп min значения. В расчетах применяют среднее арифметическое этих значений Iп.

Кроме рассмотренных ступеней реостата, предусматривают также ступени, на которых пусковой ток меньше максимального. Эти ступени, называемые маневровыми, позволяют постепенно увеличивать силу тяги и плавно трогать поезд с места. Число их на электровозах равно четырем - восьми.

Большое число ступеней реостата при минимальном числе контакторов можно получить, используя различные комбинации соединений секций резистора. Так, если замкнуть контактор 1 (рис. 32)* при разомкнутых остальных контакторах, секции а, б, в будут включены последовательно (что показано в таблице на рис. 32). Замкнув контакты контактора 2, выключают секцию а, при замкнутых контактах контактора 3 в силовую цепь введена только секция в.

* (Здесь и далее для упрощения контакты на схемах показаны в большинстве случаев без дугогашения.)

Рис. 32. Схема пускового резистора и таблица замыкания контакторов
Рис. 32. Схема пускового резистора и таблица замыкания контакторов

Замкнув контактор 4 и выключив предварительно контакторы 1 и 2, что не связано с разрывом электрической цепи, присоединяют секции а и б параллельно секции в - получают четвертую ступень пуска. Замкнув контакторы 2, 3, 4, соединяют параллельно секции а и в, образуя еще одну пусковую ступень, и, наконец, замкнув все контакторы, выводят пусковой реостат полностью. Таким образом, имея три секции и четыре индивидуальных контактора, получают шесть ступеней (позиций) пускового реостата.

Для того, чтобы знать, на какой позиции замкнуты или разомкнуты те или иные контакты контакторов, а следовательно, какие секции реостата включены и каким образом, составляют таблицу замыкания контакторов (см. рис. 32).

Пусковые реостаты собирают из отдельных элементов и объединяют в ящики (рис. 33). Элементы пусковых резисторов изготовляют из сплавов с большим электрическим сопротивлением.

Рис. 33. Ящик пусковых фехралевых резисторов
Рис. 33. Ящик пусковых фехралевых резисторов

Когда выключены все ступени реостата, на каждый из восьми последовательно соединенных тяговых двигателей приходится напряжение 3000 : 8 = 375 В, а на шестиосных электровозах 3000 : 6 = 500 В. В этом случае электровоз работает на автоматической (ее также называют ходовой безреостатной, экономической) характеристике, подобной приведенной на рис. 12, б. Автоматической она называется потому, что автоматически, без участия машиниста изменяются сила тяги FK и скорость движения в зависимости от сопротивления движению W.

В связи с этим вернемся к рис. 5, где показано, что от точки 0 до точки 0' скорость возрастает по наклонной прямой, т. е. поезд движется равномерно ускоренно. Это означает, что машинист уменьшает сопротивление реостата, поддерживая одно и то же значение пускового тока. От точки 0' и далее до точки А движение происходит с выключенным реостатом по автоматической характеристике.

В процессе разгона поезда электровоз работает на реостатных характеристиках (позициях). Время движения с выключенными ступенями реостата ограничено их нагревом. Кроме того, с увеличением этого времени возрастает и непроизводительный расход электрической энергии. Каково же соотношение расходов энергии, затрачиваемой на тягу поездов и на потери в реостате от начала до конца разгона поезда?

Чтобы ответить на этот вопрос, отложим в прямоугольных осях координат (рис. 34) по оси ординат в выбранном масштабе напряжение контактной сети Uc (точка А), по оси абсцисс время пуска tп (точка Б). С достаточной степенью точности можно считать, что пуск электровоза происходит при неизменном токе Iп; тогда сила тяги также постоянна, а ускорение а изменяется незначительно и может быть принято неизменным. В соответствии с этим скорость движения в процессе пуска будет изменяться во времени по закону υ = at, а э. д. с. двигателей E = cФυ, т. е. пропорционально скорости, а значит времени.

Рис. 34. Распределение напряжения между тяговыми двигателями и пусковым реостатом при разгоне электровоза
Рис. 34. Распределение напряжения между тяговыми двигателями и пусковым реостатом при разгоне электровоза

Из точек А и Б восстановим перпендикулярные линии до пересечения их в точке В. В момент пуска (t = 0) напряжение контактной сети равно сумме падений напряжения в обмотках тяговых двигателей и в реостате, так как при υ = 0 э. д. с. двигателей E = 0. При этом основная часть напряжения Uc будет расходоваться в реостате ввиду малости сопротивления обмоток двигателей. По оси ординат отложим падение напряжения в обмотках двигателя (точка Г). В конце пуска реостат полностью выведен из цепи тяговых двигателей и напряжение контактной сети уравновешивается э. д. с. двигателей и падением напряжения в их обмотках. Так как ток Iп в процессе пуска почти неизменен, то падение напряжения в обмотках двигателей в конце пуска составит ту же величину, что и в начале его. От точки В отложим значение этого падения напряжения - отрезок ВД. Тогда отрезок ДБ будет соответствовать э. д. с. двигателей в конце пуска. В области ОДВГ находятся значения напряжения на участках силовой цепи в каждый момент времени пуска электровоза. Если значения напряжений умножить на ток Iп то получим в соответствующем масштабе мощности, а умножив их на время пуска tп, найдем расход электроэнергии.

Площадь четырехугольника ОАВБ соответствует в определенном масштабе расходу электроэнергии на пуск тяговых двигателей. Площадь треугольника ГАВ характеризует потерю энергии в реостате, а равновеликая площадь треугольника ОДБ электромагнитную энергию двигателя. Площадь параллелепипеда ОГВД соответствует расходу энергии на нагревание обмоток двигателей. Так как этот расход сравнительно невелик, можно считать, что при пуске половина электрической энергии расходуется на создание электромагнитной энергии двигателей и половина теряется в реостате.

Познакомимся с устройством и действием индивидуальных контакторов. В зависимости от типа привода различают электропневматические и электромагнитные контакторы.

В электропневматических контакторах при замыкании низковольтной цепи катушки электромагнитного вентиля включающего типа (рис. 35, а) открывается доступ сжатому воздуху в цилиндр контактора. Поршень перемещается вверх и сжимает выключающую пружину. Изоляционный стержень поворачивает рычаг с находящимся на нем подвижным контактом. Когда подвижной рычаг коснется неподвижного, электрическая цепь замкнется, но на этом процесс включения не закончится. Подвижной контакт и рычаг соединены шарнирно. Между их выступами находится притирающая пружина. После соприкосновения контактов поршень вместе со стержнем продолжает двигаться вверх и подвижной контакт перекатывается по неподвижному. Благодаря этому поверхность контактов очищается от образовавшихся окислов.

Рис. 35. Схема (а) и общий вид индивидуального электропневматического контактора (б)
Рис. 35. Схема (а) и общий вид индивидуального электропневматического контактора (б)

Чтобы выключить контактор, разрывают цепь катушки электромагнитного вентиля. При этом пружина возвращает клапаны вентиля в исходное положение, нижняя полость цилиндра сообщается с атмосферой, поршень под действием выключающей пружины движется вниз и контакты размыкаются.

Электропневматические контакторы (рис. 35, б) используют в цепях с большими токами, где требуется особо надежный контакт. В цепях со сравнительно малыми токами применяют электромагнитные контакторы. Для того чтобы включить электромагнитный контактор, замыкают цепь его включающей катушки (рис. 36); под действием магнитного поля, создаваемого катушкой, якорь притягивается к сердечнику катушки и, поворачиваясь вокруг оси, замыкает неподвижный и подвижной контакты, Одновременно сжимается выключающая пружина. После замыкания контактов ток пройдет через дугогасительную катушку, контакты и гибкий шунт к нагрузке.

Рис. 36. Схема электромагнитного контактора
Рис. 36. Схема электромагнитного контактора

Индивидуальные контакторы оборудуют дугогасительными устройствами, так как они осуществляют переключения в силовой цепи электровоза под нагрузкой.

предыдущая главасодержаниеследующая глава








© RAILWAY-TRANSPORT.RU, 2010-2019
При использовании материалов сайта активная ссылка обязательна:
http://railway-transport.ru/ 'Железнодорожный транспорт'
Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь